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Polygonal billiards and transport: Diffusion and heat conduction

Daniel Alonso,* A. Ruiz, and I. de Vega
Departamento de Fı´sica Fundamental y Experimental, Electro´nica y Sistemas, Universidad de La Laguna,

La Laguna 38203, Tenerife, Spain
~Received 12 September 2002; published 26 December 2002!

A detail study of the diffusive and heat conduction properties of a family of nonchaotic billiards is presented.
For dynamical systems with dynamical instability the relation between transport properties and characteristic
quantities of the chaotic dynamics naturally emerge. On the contrary, in dynamical systems without chaos~in
the sense of exponential separation of nearby trajectories! much less is known. From numerical simulations we
compute several quantities related to diffusion, such as the mean square displacement, the behavior of the
hydrodynamic modes for long wavelengths, through the properties of the incoherent intermediate scattering
function and the velocity autocorrelation function, in connection with the Green-Kubo formula. The analysis of
all these quantities indicates that some systems among the family studied have normal diffusion and others
anomalous diffusion. The spectral measure associated with the velocity autocorrelation function is also studied.
The same analysis reveals that for all the systems treated there is not a well defined super Burnett coefficient.
The heat conduction is also explored and found that, naturally, it is valid for the systems that behave diffu-
sively.

DOI: 10.1103/PhysRevE.66.066131 PACS number~s!: 05.45.2a, 05.20.2y, 05.60.Cd, 44.10.1i
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I. INTRODUCTION

The connections between dynamical and transport pro
ties in dynamical systems are not completely explored. In
past decade the emphasis on the study of chaotic system
been fruitful and today there exist beautiful relations b
tween chaotic and transport properties such as diffusion,
and momentum transport. A set of remarkable results es
lishes the links between diffusion and microscopic dyna
cal quantities such as the Kolmogorov-Sinai entropy and
Lyapunov exponents. In the case of other transport coe
cients it has been also possible to prove their existence s
ing at a mechanical level@1–7#.

In particular, a full Liouvillian characterization of diffu
sion in specific chaotic models has illuminated the way
which it is possible to connect the above mentioned mic
scopic quantities with macroscopic ones@10#. Another im-
portant result, for a class of hyperbolic systems~transitive
Anosov!, is the so-calledchaotic hypothesisto describe non-
equilibrium situations@8#. In all these works the degree o
stochasticity needed to consistently describe irreversible p
nomena and relaxation comes from the exponential insta
ity of the microscopic dynamics. Nonetheless many qu
tions arise, especially in relation to the necessary conditi
that a microscopic motion should have in order to obse
normal transport at macroscopic scale.

However there is increasing numerical evidence that s
tems with weaker dynamical stochasticity may exhibit n
mal transport@9,11,12#. There is also numerical evidence th
systems such as a class of triangular billiards may be mix
@13,14#. Therefore it is interesting to investigate in detail
class of dynamical systems for which no dynamical chao
present and try to seek their transport properties.

For a pure hyperbolic dynamics we have previously st

*Email address: dalonso@ull.es
1063-651X/2002/66~6!/066131~15!/$20.00 66 0661
r-
e
has
-
at
b-
i-
e

fi-
rt-

-

e-
il-
s-
s
e

s-
-

g

is

-

ied the so-called Lorentz channel, a simple Lorentz g
model for which there is normal heat transport@15,16#. In
fact this system can be considered a prototype for the
called escape-rate formalism@7,17# and it can be included in
a class of chaotic systems for which many analytical res
have been obtained.

We study in this work a modified version of the Loren
channel in which the chain is made up of triangles instead
semicircles. Our systems are in this case polygonal billia
and thereforeno dynamical chaos~in the sense of exponen
tial separation of nearby trajectories! is present. To study
transport in these systems we analyze the diffusion of p
ticles within the billiard looking at the fluctuations of the
positions, in particular the mean square displacement.
polygonal billiards studied are ergodic, so mean time av
ages are equal to ensemble averages. We explicitly com
the mean square displacement, which defines diffusion,
the next order fluctuation, which defines the super Burn
coefficient. If the mean square displacement grows linea
in time the system is expected to be diffusive.

Nonetheless we would like to examine more carefully
the diffusion equation is valid in the systems studied. W
numerically compute, following Van Hove@18#, the behavior
of the hydrodynamic modes and evaluate the Fourier tra
form of the particle density of the system for long wav
lengths ~the intermediate incoherent scattering functi
@25#!.

Moreover, the Green-Kubo formula establishes the re
tion between the diffusion coefficient and the integrated
locity autocorrelation function. In this respect we have an
lyzed the decay of the velocity autocorrelation function. T
correlation functions are intimately related to spectral fun
tions. The correlation functions and spectral functions
just two representations of the same object. The spec
function is a Fourier transformation of the autocorrelati
function. Because of this, we have obtained the spectral m
sure and made a multifractal analysis of it.
©2002 The American Physical Society31-1
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ALONSO, RUIZ, AND de VEGA PHYSICAL REVIEW E66, 066131 ~2002!
Finally, to enrich the study of transport properties in p
lygonal billiards we have also investigated the heat cond
tion in these systems. For this purpose we put our polygo
chain in contact with two heat reservoirs at different te
peraturesT0 and T1. We continue in this way our previou
work on heat conduction in the Lorentz channel@16#.

The paper is organized as follows. In Sec. II we give
brief introduction of the model we will study. We emphasi
the known facts about polygonal billiards that have releva
in our study. In the next section we analyze the diffusion
particles in a polygonal chain. We give a brief theoretic
introduction of the quantities we compute. This section
mainly concerned with the mean square displacement as
as the study of the incoherent intermediate scattering fu
tion and the dispersion relation for the hydrodynamic mo
of diffusion. In Sec. IV we focus on the analysis of the v
locity autocorrelation function and spectral measures. In S
V we consider the analysis of heat conduction in the poly
nal chains studied. Finally in Sec. VI we put together t
main conclusions.

II. DYNAMICAL SYSTEM

Since our main interest is to study transport properties
their relation to specific dynamical properties we conside
point particle confined to move inside a periodic chain. T
fundamental cellD of the chain is a polygon in the Euclidea
plane (x,y)5R2. The border of the cell,]D, is composed of
straight lines. On the bottom, along thex axis, there is a saw
structure with four equal lines forming two identical edges
angle p22f2. On the top there are two equal segme
forming an edge of anglep22f1. The length of the cell
along thex axis is 2d andh along they axis. Our billiard is
constructed by translations ofD along thex axis. In Fig. 1
we show an schematic representation of the geometry of
system.

If the segments of the polygonal cell form angles that
rationally related top, then it is said that the polygon i
rational. On the other hand, if one of the angles is irrat
nally related top then it is said that the polygon isirratio-
nal.

Associated with the billiard table there is a flowF t(2`

,t,`) in the phase spaceĜ[(x,y,px ,py), where (px ,py)
is the momentum of the particle. Because of the conserva
of energy the motion is confined to a three-dimensional

FIG. 1. Schematic representation of the polygonal billiard ch
and its parameters. The fundamental cellD is also shown.
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striction of Ĝ, i.e., G[(x,y,u)5D3S1, where u is the
angle of the velocity measured counterclockwise from
positivex axis. The problem scales with energy and theref
we can take the velocity asuvu51. The flowF t preserves the
measuredx dy du. Within the billiard the particle moves
freely and suffers elastic collisions at]D. The boundary can
be parametrized by the arclengths with respect to some ori-
gin O. Each collision point is labeled by the impact coord
nates and the projection of the velocityv with respect to the
normal unit vector at the boundaryn, i.e., v•n5cosu. The
flow F t induces a mappingf between pairs (s,cosu) that
preserves the measureds d(cosu).

Polygonal billiard tables show a very rich dynamics a
are extensively studied in the literature. However, they h
attracted much less interest than chaotic billiards. In a
lygonal billiard the collisions with the straight segments
not induce chaos. Nonetheless nearby trajectories follow
ferent paths as soon as they meet the vertices of the bill
~see Fig. 2!, so some stochasticity may be expected, not fr
the divergence of nearby trajectories, but from the splitt
of the paths at the vertices of the boundary]D @19#.

If the billiard is rational the dynamics takes place on
surfaceS of genusg(S)>1. S has a nontrivial topology,
which is a consequence of the singular character of the v
tor fields that can be constructed for the dynamics and
are derived from the constants of motion that exist@19#. Such
vector fields are singular for a rational polygon and hencS
is topologically equivalent to a multihandled sphere. Fo
simply connected billiard ofn rational angles,a i5ppi /qi
( i 51, . . . ,n), it is possible to give an explicit formula fo
g(S). Let N be the least common multiple ofqi , then
g(S)511N/2( i 51

n (pi21)/qi @20#. An example of a
multiple-connected billiard has been studied in@21#. Trivi-
ally, the dynamics is nonglobally ergodic ifg(S).1. None-
theless the flowF t can be decomposed into a one-parame
family of flows Fu

t on the surfaceS, with 0,u,p/N. The
flows Fu

t are calleddirectional flowsalong the directionu.
For almost all angles they are ergodic@20#. It is also known
that for a general polygon ofn sides there exists a dense s
of ergodic polygons. In fact, if a polygon has an irration
angle such that it admits a superexponential fast rational
proximation then the dynamics is ergodic. In this sense i
possible to construct irrational polygons that are ergo
@23#. For irrational polygons much less is known, howev
there are numerical studies, especially for triangles, that g
some insight on the properties of the dynamics for irratio
polygons. Artuso@13# has shown numerically that they are

n

FIG. 2. Typical separation of two initial nearby paths by
edge.
1-2
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POLYGONAL BILLIARDS AND TRANSPORT: . . . PHYSICAL REVIEW E 66, 066131 ~2002!
least weakly mixing and the numerical data is not incomp
ible with mixing. Casati and Prosen@14# extensively studied
triangular billiards and their numerical data strongly sugge
that irrational triangles are mixing. To date, there is no ma
ematical theorem that supports these numerical results bu
Gutkin pointed out@22#, there is no theorem that preclude
the possibility that irrational triangles are in fact mixing.

We present in this work an analysis of the dynamics i
class of irrational polygons. We are particularly concern
with the transport properties that these billiards may deve
such as diffusion, correlation decay, and heat transport.

We have taken our fundamental domain to be an irratio
polygon with f15(A521)p/8 and f25p/q (q
53,4,5,6,7,8,9). We took h51 and d5h/(tanf1
1tanf2/2); with this choice no particle can travel along th
chain without colliding with the boundary of the billiard
Furthermore, the surface available for particles within a fu
damental cell isd/2, equal for all members of the family o
systems. In all our calculations we have used the continu
time as well as the discrete time. But first let us introdu
and discuss some relevant concepts for the later deve
ments.

III. DIFFUSION

To study diffusion we start with a system withN ~large!
particles, such that is possible to define a densityn(x,t) that
depends on the spatial coordinatex and the timet. This den-
sity gives the number of particles located at timet within a
small volumedx centered on positionx ~we suppose a one
dimensional system but generalization to more dimension
straightforward!. Associated with this density we have
mass currentj (x,t). The Fick’s law establishes a linearphe-
nomenologicalrelation between the small gradient¹n(x,t)
and the mass current, i.e.,

D¹n~x,t !5 j , ~1!

whereD is a constant independent of space and time~phe-
nomenological coefficient!. Moreover, if there is a local con
servation of mass,] tn1¹• j50, then the densityn(x,t) sat-
isfies the diffusion equation

] tn5D¹2n ~2!

andD is the diffusion coefficient. This equation is valid fo
large systems. If all particles are located atx5x0 at certain
initial time t50, then the solution of Eq.~2! is

n~x,t !5
1

~4pDt !1/2
e2(x2x0)2/4Dt. ~3!

One interesting question is related to the specific con
tions that a microscopic dynamics should have, such th
large system of particles satisfies a diffusion equation in
time evolution. To be more specific, we can launch an
semble of particles, construct the spatial distributionna(x,t)
for different times, and check if the resulting distributio
evolves according to Eq.~2!.
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It is convenient to introduce the Fourier transformn̂(k,t)
of n(x,t) as @18,24,25#

n̂~k,t !5E dk eikxn~x,t !. ~4!

If all the particles are initially distributed in the system a
cording to their positionsxi(t50)(i 51, . . .N) and because
of the time evolution they are at positionsxi(t) at later time
t, then the densityn(x,t) can be written as the average

n~x,t !5^d„x2@xi~ t !2xi~0!#…&, ~5!

where the averagê& is performed over theN particles. The
explicit form of the functionn̂(k,t) can be obtained combin
ing the last two equations to get

n̂~k,t !5E dk eikx^d„x2@xi~ t !2xi~0!#…&5^eik[xi (t)2xi (0)]&.

~6!

The functionn(x,t) is known, after Van Hove@18#, asself-
space-time correlation functionand its Fourier transform
n̂(k,t) is called incoherent intermediate scattering functio.
It is obvious that if the self-space-time correlation functi
satisfies the diffusion equation, with the condition that
particles are located at a single point at the initial time, th
the incoherent intermediate scattering function satisfies
diffusion equation in reciprocal space,

] tn̂~k,t !52k2Dn̂~k,t !, ~7!

with the initial condition n̂(k,0)51. This initial value
~Cauchy! problem can be solved explicitly to give

n̂~k,t !5e2k2Dt. ~8!

In this manner the solutions of the diffusion equation a
then, with the help of Eq.~4!, a linear superposition ofhy-
drodynamic modes@40#

nk~x,t !5eikxe2k2Dt. ~9!

These hydrodynamic modes are solutions of the diffus
equation and are spatially periodic with wave numberk.
They decay exponentially in time, with characteristic tim
(Dk2)21. The longer the wavelength of the mode, the larg
the decay time. In other words, we have smaller dampi
which is a consequence of the mass conservation law@10#.

It is convenient for our purposes to introduce, from t
incoherent intermediate scattering function, the dispers
relation for the hydrodynamic modes@26#

sk5 lim
t→`

1

t
ln n̂~k,t !52k2D, ~10!

in terms of which the hydrodynamic modes are expresse
@10#

nk~x,t !5eikxeskt. ~11!
1-3
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ALONSO, RUIZ, AND de VEGA PHYSICAL REVIEW E66, 066131 ~2002!
In general, the diffusion equation is a consequence of a
approximation for the thermodynamic force conjugated
the mass current, which includes only a¹n(x,t) term~Fick’s
law!. This leads to a¹2n term in the diffusion equation. If
n(x,t) varies rapidly in space the diffusion equation can
extended to include higher spatial derivatives ofn(x,t), such
as¹4n. Therefore an extra term,B¹4n, appears in the dif-
fusion equation.B is called the super Burnett coefficient an
all that has been said remains valid ifB is well defined. If so,
a more general expression forsk follows:

sk5 lim
t→`

1

t
ln n̂~k,t !52Dk21Bk41q~k6!. ~12!

An interesting feature of the incoherent intermediate scat
ing function is its relations to the spatial fluctuations. Su
relations can be derived in the following manner. First let
notice thatn̂(k50,t)51. The derivatives ofn̂(k,t) with re-
spect tok at k50 can be computed; in particular the fir
derivative is

]kn̂~k,t !uk505]k^e
ik[x(t)2x(0)]&uk505^ iDxeikDx&uk50

5 i ^Dx&, ~13!

whereDx5x(t)2x(0). Therefore, the first derivative of th
incoherent intermediate scattering function atk50 gives the
average value of the fluctuationx(t)2x(0). A similar rea-
soning leads to an explicit relation between higher deri
tives and higher order fluctuations. In particular, the sec
derivative and the mean square displacement are related

]kk
2 n̂~k,t !uk5052^~Dx!2&. ~14!

If the diffusion equation holds then the Einstein relation
diffusion follows

^~Dx!2&52Dt. ~15!

In the same manner it is possible to derive relations invo
ing higher order fluctuations. A short calculation gives t
explicit formula

^~Dx!4&23^~Dx!2&2524Bt, ~16!

which is an Einstein relation for the super Burnett coe
cient.

If we center our attention on the mean square fluctuat
it follows that the analytic behavior of the incoherent inte
mediate scattering function, at least up to orderk2, is re-
quired in order for the mean square displacement~15! to be
well defined. Indeed if the analytic behavior is satisfied a
the Einstein relation~15! holds, thenn(x,t) satisfies the dif-
fusion equation.

If the Einstein relation is satified then we speak ofnormal
diffusion; on the contrary, we haveanomalous diffusionif the
mean square displacement does not grow linearly in tim
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A. Ensemble numerical simulations

In this section we present the results of our numeri
simulations concerning the diffusive behavior of the polyg
nal chain. First we compute the mean square displacem
and study its time variation in order to explore the validity
the Einstein relation for diffusion. Due to the geometry
our system the particles have transport along thex direction.

We integrated the motion for 1.23105 particles up tot f
5105 continuous time units. The mean square displacem
was computed from a Monte Carlo average over the p
ticles. We focused on the casesf25p/q, q53,4,5,6,7,8,9.
Up to the maximum time we have considered the me
square displacement for thef25p/3 system grows as;t1.3,
which reflects a superdiffusive behavior. The casef25p/4
behaves subdiffusively, witĥ(Dx)2&;t0.86. All the other
systems have a power very close to one; from this data
can infer that they satisfy the Einstein relation for diffusio
These results are shown in Fig. 3 and Table I.

The numerical results indicate that the family of syste
considered presents both types of diffusive behavior, stra
and normal, at least up to the time we can reach in
simulations. As we have previously discussed, we would l
to check further the nature of the dynamics of an ensembl
particles within the chain. Another quantity of interest su

FIG. 3. Mean square displacement of position forf25p/q (q
53,4,5,6,7,8,9). The label on the right-hand side of each cu
indicates the value ofq. The simulations were done for 1.23105

particles and up to timet f5105. The value of the slope for eac
curve is indicated in Table I.

TABLE I. Diffusion with 1.23105 particles up to a continuous
time 105. B was obtained from the fittinĝ(Dx)2&5AtB.

f2 B

p/3 1.30
p/4 0.86
p/5 1.03
p/6 1.04
p/7 1.06
p/8 1.01
p/9 1.01
1-4
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POLYGONAL BILLIARDS AND TRANSPORT: . . . PHYSICAL REVIEW E 66, 066131 ~2002!
able for this purpose issk , as defined in Eq.~10!, wherek is
the x component of the wave vector. We limit ourselves
wave vectors alongx direction. If the motion is diffusive we
should observe that for small values ofk the results are com
patible with Eq.~10!.

To clarify this question the following simulation wa
done. We took an ensemble of 1.23106 particles and inte-
grated their trajectories up to a timet f553103. From the
data obtained we constructed the histograms ofx positions,
which are a numerical approximation ofn(x,t f). In Fig. 4
we show the results for the systemsp/3 andp/4, and in Fig.
5 the data for the systemsp/5 andp/6.

The figures also include the best Gaussian fitting~for
comparison! of the data. Clearly thep/4 system is far from a
Gaussian shape, meanwhile the other systems seem c
The tails of the histograms are very well reproduced b
Gaussian profile forf25p/5 andp/6, while the tail of the
histogram for thef25p/3 system shows some deviation
from the Gaussian bell.

We have computedn̂(k,t) from a series of numerica
simulations with an increasing number of particles and
fixed value ofkx5k50.01,ky50. In all cases it is observe
~see Figs. 6, 7, and 8! that the decay in time ofsk is better
reproduced when the simulations involve a larger numbe
particles. The question is if such decay is exponential. In F
9 we have computed lnuln„n̂(k,t)…u. From the data it seem
that the decay is not exponential forf25p/3 andp/4, while
for the other cases it seems to be exponential, at least u
the time we are able to reach in our simulations. The dat
compatible withn̂(k,t)5Ae2ak2tb, with b51 only for f2
5p/q,q55,6,7,8,9. In these cases the numerical simu

FIG. 4. Histograms ofx coordinates for an ensemble o
1.23106 particles at timet f553103, for f25p/3 and for f2

5p/4. The thick line (p/3) is the best Gaussian fitting to the dat

FIG. 5. The same as Fig. 4 for the systemsf25p/5 andf2

5p/6.
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tions strongly suggest that the systems behave diffusiv
and probably develop hydrodynamic modes.

We could ask ourselves about the super Burnett coe
cient. Our data clearly indicates that the Einstein relation
the super Burnett coefficient is not valid, but we will tre
this point in the next section.

B. f2ÄpÕ6 system: single particle simulations

In order to study in more detail a system that shows d
fusive behavior, we consider in this section the particu
systemf25p/6. In this case we compute the averages us
the long time series generated from a single particle sim
tion. Throughout the section time is discrete and correspo

FIG. 6. lnun̂(k,t)u vs time forf25p/6 computed with an increas
ing number of particlesN. Notice how taking a largerN improves
the resolution of the exponential decay. In this figure and in the
of the paper, a.u. refers to arbitrary units.

FIG. 7. The same as Fig. 6 forf25p/3.
1-5
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ALONSO, RUIZ, AND de VEGA PHYSICAL REVIEW E66, 066131 ~2002!
to the collision time. To determine the consequences that
length of the time series has on the numerical results we h
used several time series with increasing length.

First we consider the mean square displacement. The
sults are shown in Fig. 10 for different lengths of the tim
series. In all the cases a diffusive behavior is clear. T
power that gives the growth of the mean square displacem
in time is almost one, hence the Einstein relation for dif
sion ~15! is satisfied.

It is interesting to compute higher order fluctuations.
this aim we have calculated̂(Dx)4&. This average grows
quadratically in time asa1t21b1t1g1. In the same vein, as
^(Dx)2& satisfies the Einstein relation~15!, the average
3^(Dx)2&2 also has a quadratic behavior with time, whi
can be expressed asa2t21b2t1g2. Therefore, if there is a
well defined Einstein relation for the super Burnett coe

FIG. 8. The same as Fig. 6 forf25p/4.

FIG. 9. lnuln„n̂(k,t)…u vs ln t for f25p/q(q53,4,5,6,7,8,9).
The label on the right-hand side of each curve indicates the valu
q. The dotted line has slope51.
06613
he
ve

e-

e
nt

-

-

cient @see Eq.~16!#, it should happen thata15a2, in such a
way that the differencê (Dx)4&23^(Dx)2&2 should grow
linearly in time.

Our numerical simulations give clear evidence that for o
billiards the Einstein relation for the super Burnett coef
cient is ill defined. We have numerically computed t
curves for̂ (Dx)4& and 3̂ (Dx)2&2 for time series of different
lengths. For each curve we fitted the data to a functionat2

1bt1g and extracted the coefficientsa1 anda2. For hav-
ing a case to compare with, we have done the same eva
tions for a Lorentz channel@16#. For this system it is clear
that the coefficientsa1 and a2 get closer as soon as th
statistics is improved~see Tables II and III and Figs. 11, 12
and 13!. For the polygonal chain the results are drastica
different and drive us to the conclusion that there is no
well defined super Burnett coefficient for these systems.
we conclude from these results that the polygonal chain
a well defined Einstein relation for diffusion, but not for th
super Burnett coefficient. These results were also observe
our ensemble simulations. The fact that the higher mome
of Dx are not defined in a polygonal billiard has been pre

of

FIG. 10. Mean square displacement computed from a sin
trajectory with 1.4,7,30, and 493106 collisions in a system with
f25p/6. As soon as the statistics is improved it is difficult
distinguish the different curves.

TABLE II. Coefficients a1 and a2 for 3^(Dx)2&2(t)5a1t2

1b1t1g1 and^(Dx)4&(t)5a2t21b2t1g2 in the Lorentz channel.
N indicates the length of the trajectory over which averages
evaluated.

N3105 a1 a2

7 0.06497 0.05737
14 0.05367 0.05103
35 0.05897 0.05796
70 0.05645 0.05260
140 0.06003 0.05914
300 0.06017 0.05955
350 0.06181 0.06152
490 0.06120 0.06125
1-6
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POLYGONAL BILLIARDS AND TRANSPORT: . . . PHYSICAL REVIEW E 66, 066131 ~2002!
ously studied by Dettmann and Cohen@11#. Let us point out
that the disorder of the scatterers plays a role in their res
while in our case the scatterers are ordered.

IV. CORRELATION FUNCTIONS

The nature of fluctuations contained in correlation fun
tions plays a central role in the understanding of transp
properties. From the behavior of some autocorrelation fu
tions we can infer if the system will show some transp
property. In particular, because of the Green-Kubo form

D5E
0

`

^v tv0&dt, ~17!

where the average is taken with respect to the proper inv
ant measure, the decay of the velocity autocorrelation fu
tion is crucial to have a well defined diffusion coefficient~for
a nice presentation of this subject we refer to@24#!.

For this relation to hold, the velocity autocorrelation fun
tion should decay fast enough. Therefore it is interesting
analyze in more detail the properties of the correlation fu
tions in our system. With respect to transport, systems w

TABLE III. The same as Table II for the pseudointegrable ch
nel (f25p/6).

N3105 a1 a2

7 0.003719 0.003822
14 0.004916 0.004591
35 0.005576 0.005315
70 0.005077 0.006768
140 0.004912 0.006875
300 0.00523 0.00675
350 0.00504 0.007102
490 0.005088 0.006907
06613
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real continuous spectrum and fast enough decay of corr
tion functions may present Gaussian fluctuations in their
proach to equilibrium, in the sense of the central limit the
rem. For such systems it is possible to have a well defi
transport coefficient. To study this question more deeply
us briefly introduce some concepts which will be useful
the forthcoming discussion.

Let us consider a dynamical system (F t,G,m), whereF t

is a flow (t maybe discrete! acting on a phase spaceG with
an invariant measurem @33#. A dynamical system is said to
be mixing if for any pair of functionsf andg that belong to
the Hilbert spaceH of square integrable functionsL 2(G,m)
correlation functions decay in time, i.e.,

-

FIG. 12. Comparison of the fluctuation^(Dx)4& with 3^(Dx)2&2

for a single particle simulation for the Lorentz channel.~a! is for a
time series up to 73105 collisions, ~b! 73106, ~c! 1.43107, and
~d! up to 4.93107 collisions.
FIG. 11. Graphical representation of data contained in Table II~a! and Table III~b!.
1-7
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lim
t→`

E
G
dm~x! f ~F tx!g~x!5E

G
dm~x! f ~x!E

G
dm~x!g~x!.

~18!

The mixing condition implies a weaker property,weak mix-
ing that requires the correlation functions to decay in
mean

lim
t→`

1

t E0

t

dtF E
G
dm~x! f ~Ftx!g~x!

2E
G
dm~x! f ~x!E

G
dm~x!g~x!G2

50. ~19!

Another important property implied from mixing or wea
mixing is ergodicity which establishes the equivalence b
tween the phase space and the time averages,

E
G
dm~x! f ~x!5 lim

t→`

1

t E0

t

f ~Ftx!dt. ~20!

At this point we can introduce the phase space correla
function of two observablesf andg

Cf g
G ~ t !5E

G
dm~x! f ~F tx!g~x!, ~21!

and the time correlation function as

Cf g
T ~ t !5 lim

T→`

1

TE0

T

dt f ~F t1tx!g~Ftx!. ~22!

In terms of these correlation functions ergodicity means

FIG. 13. The same as Fig. 12 for the polygonal billiard.~a! is for
a time series up to 73105, ~b! 3.53106, ~c! 33107, and ~d!
4.93107 collisions. Figures 12 and 13 show how the super Burn
coefficient is well defined for the Lorentz channel but not for t
polygonal chain.
06613
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Cf 1
G ~ t !5Cf 1

T ~ t !. ~23!

To study how statistical ensembles evolve we consider c
relation functions such as

Cf g
G 5E

G
dm~x! f ~F tx!g~x!2E

G
dm~x! f ~x!E

G
dm~x!g~x!.

~24!

If they decay to zero for any choice off andg then we have
a system with the mixing property. It is relevant for o
purposes to consider the Fourier transform of the correla
function, i.e., thespectral function:

Sf g~v!5E
2`

`

dt eivtCf g
G ~ t !. ~25!

The spectral function contains information on how the s
tem evolves in time and which frequenciesv are important
in such evolution. The frequencies can be real or comp
The role of this frequency spectrum, in short thespectrum, is
better discussed in the context of spectral theories. Spe
theories for real frequencies were developed by Koopm
@27# and Neunmann@28#, in their context the spectrum ma
have a discrete and a continuous component. A singular c
tinuous spectrum may also be possible@21#. In addition there
is a spectral theory for complex frequencies that was de
oped by Pollicott@29# and Ruelle@30#. The complex frequen-
cies are useful to deal with systems that show decay, ei
exponential or algebraic, that can be characterized in te
of the so-called Pollicot-Ruelle resonances. They are a
useful in the description of decay properties in chaotic sc
tering @10,31#. In this article we only consider the real spe
trum.

The spectral analysis of a system starts from theevolution

operator Ût acting on the Hilbert spaceH5L 2(G,m) of
square integrable functions, with the scalar product^ f ug&
5*G f * (x)g(x)dm(x). The evolution operator is define
through the action of the flowF t asÛt f (x)5 f (F tx). Ût is
unitary if F t is invertible and therefore its spectrum is on t
unit circle. The properties of the flow can be described
terms of the spectral properties ofÛt. The application of the
spectral theorem gives a spectral decomposition ofÛt in all
its components@32–34#.

In general we have a spectral resolution ofÛt with the
form

Ût5E dÊv e2 ivt, ~26!

whereÊv is the spectral projector operator corresponding
the real eigenvaluev. The decomposition is complete in th
sense that*dÊv is a resolution of the identity.

The nature of the spectrum can be analyzed if we hav
realization of a spectral measure associated with a partic
observable. For any functionf within L 2(G,m), in the ortho-
complement of the invariant subspace of unit eigenval

tt
1-8
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POLYGONAL BILLIARDS AND TRANSPORT: . . . PHYSICAL REVIEW E 66, 066131 ~2002!
Hc5H*H(v50) with Ê(v50)H5H0, a spectral measure ca
be constructed asm f(v)5^ f uÊv f &.

The spectral measure is related to the autocorrela
function of f in the following manner

Cf f
G ~ t !5^ f uÛt f &5E ^ f udÊv f &e2 ivt5E dm f~v!e2 ivt,

~27!

where we have used Eq.~26! and dm f(v)5^ f uÊv1dv f &
2^ f uÊv f &. In this manner the spectral measure associa
with f is the inverse Fourier transform of the autocorrelat
function of f. The nature of the spectrum is contained
dm f(v) or its cumulative function

E
vmin

v

dm f~v8!5F f~v!. ~28!

If there is a point spectrum thenF f(v) will be a staircase
function. If on the other hand the spectrum is continuous
cumulative function will be a continuous function an
dFf(v)/dv.0. A singular continuous spectrum will giv
rise to adevil staircase–type curve forF f(v).

If for any choice off PH the spectrum is continuous the
the system is mixing. However, if there is a point spectr
contribution the system cannot be mixing or even weak m
ing. The presence of the weak-mixing property without m
ing has been studied and related to the existence of sing
continuous components in the spectrum@21#.

As it has been mentioned before, a system with conti
ous spectrum, and for which the autocorrelation function
some observablef decays fast enough, may exhibit Gauss
fluctuations such that@10,32#

lim
T→`

mH x,

E
0

T

f ~F tx!dt2T^ f &m

A2D fT
,yJ 5

1

A2p
E

2`

y

e2z2/2 dz,

~29!

whereD f is a generalized diffusion coefficient defined by t
variance

D f5 lim
T→`

1

2T K F E
0

T

f ~F tx!dt2T^ f &mG2L
m

. ~30!

The generalized diffusion coefficient is related to the au
correlation function off by the Green-Kubo formula

D f5
1

2E2`

`

dt Cf f
G ~t! ~31!

with the condition limT→`(1/T)*2T
T dtutuCf f

G (t)50. In
terms of the spectral functionSf f(v) it follows then

2D f5Sf f~0!. ~32!

This equation links the behavior of the short frequen
modes with transport, encoded by the generalized diffus
constantD f at dynamical level. In the case off 5v we re-
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cover Eq.~17!. To summarize, the spectral and correlati
functions are just different representations of the same
ject. Furthermore, they contain information about invaria
properties such as mixing, weak mixing, or ergodicity.
particular, for systems with continuous spectrum and f
enough decay of correlations, generalized transport co
cients may be defined and the Einstein relation and
Green-Kubo formula are equivalent. In addition, the beh
ior of the spectral measure at zero frequency fixes the g
eralized diffusion coefficient.

A. Numerical results

As we have already emphasized, the velocity autocorr
tion function~VACF! plays an important role in the analys
of diffusion because of the Green-Kubo formula~17!. If the
VACF decays in a convenient manner then there exists a
defined diffusion coefficient.

We have numerically obtained the VACF in the cases
f25p/3, p/4 andp/6 for 106 particles, initially distributed
at random in one fundamental cell, and integrated their
jectories over 215 time steps withDt51022. The results are
shown in Fig. 14. The first point to notice is the oscillato
form in the decay of the VACF, in contrast with the monot
nous decay in the Lorentz gas. In any case, the decay o
VACF can be considered as an indication that the syste
treated are mixing. Nonetheless, mixing implies that corre
tion functions decay forall observables and not just for th
velocity. From Eq.~17! we can obtain the diffusion coeffi
cient by integrating the VACF. In doing so we see that t
Green-Kubo formula gives results in good agreement w
those obtained from the Einstein relation for diffusion. In t
systemp/3 the correlation function does not seem to dec
fast enough, and hence the diffusion coefficient diverges.
Fig. 15.

B. Spectral analysis

It is also possible to extract information about the sp
trum from the VACF as previously discussed. If we use E
~25! and~27! we can obtain the spectral function. In Fig. 1
is plotted the spectral functions for the correlation functio

FIG. 14. Velocity autocorrelation functions forf25p/6, p/4,
andp/3.
1-9
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ALONSO, RUIZ, AND de VEGA PHYSICAL REVIEW E66, 066131 ~2002!
numerically obtained, which are in good agreement with
expectations of Eq.~32! for those cases in which correlation
decay.

The measure so reconstructed may exhibit interes
scaling properties@13,21#, in particular the correlation and
information dimensions. The multifractal analysis of t
measure can be done as follows. The spectral interval is
vided in subintervalsI N,a (a51, . . . ,2N). The generalized
dimensions of the measuredm f(v), D1(m f), and D2(m f),
are the scaling exponents defined by

x1,N5 (
a51

2N

m f~ I N,a!ln m f~ I N,a!;2ND1 ln 2, ~33!

FIG. 15. The cumulative integral of the velocity autocorrelati
function ~thin line! and ^„x(t)2x(0)…2&/2t ~thick line!.

FIG. 16. Spectral functions corresponding to the velocity au
correlation functions in Fig. 14.
06613
e

g
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x2,N5 ln (
a51

2N

m f
2~ I N,a!;2ND2 ln 2. ~34!

It is known @21# that under certain assumptionsD1 coincides
with the Hausdorff dimension of the measure. TheD2 coef-
ficient is related to the integrated correlation function. In t
case of continuous spectrum the integrated correlation

Cf
int~ t !5

1

t E0

t

dtuCf~t!u2 ~35!

of an observablef is expected to decay to zero as

Cf
int~ t !;t2D2 ~36!

-

FIG. 17. D1 coefficient~see text! for the spectrum derived from
the velocity autocorrelation function. The dotted line correspond
a line with slope21.

FIG. 18. Integrated velocity autocorrelation functions; see E
~35!. The dotted line corresponds to a line with slope21.
1-10
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POLYGONAL BILLIARDS AND TRANSPORT: . . . PHYSICAL REVIEW E 66, 066131 ~2002!
with D2 defined in Eq.~34!. The multifractal analysis of the
spectral measure we obtained~see Fig. 17! indicates thatD1
is in all cases almost one, while our data is not prec
enough to give a good estimation ofD2. In any case, the
integrated correlation functions, see Fig. 18 and Eq.~36!,
decay ast21; this suggests again that the systems could
mixing. A more precise statement aboutD2 requires us to
have the VACF for longer time. This implies integrating
much larger ensemble of particles~to improve the statistics!
further in time.

V. HEAT CONDUCTIVITY

We also studied the heat conductivity of the polygon
chain. There is a major interest in simple models that m
exhibit heat conductivity. A series of studies~in which no
Markovian limit is involved! has been devoted to one
dimensional chains of nonlinear coupled oscillators and th
is strong numerical evidence@37# ~see@35,36# for recent de-
velopments! for the validity of the Fourier heat conductio
law in the so-calledding-a-ling ~where oscillators exchang
energy via intermediate hard spheres!, while the situation is
considerably more complicated in the Fermi-Pasta-Ul
chain~where oscillators are coupled by third and fourth ord
nonlinear terms! where, even above the chaoticity thresho
heat conductivity seems abnormal@39#. Both systems exhibit
exponential instability in numerical simulations, thus posit
ity of Lyapunov exponents cannot presumably be a suffic
condition for inducing normal transport properties. More
cently anomalous heat transport has been reported for a
atomic one-dimensional ideal gas@38#.

In the case of the Lorentz channel@16# normal heat con-
ductivity is observed. We will study in which cases (f2 val-
ues! the heat conduction is normal in our polygonal billiard
More recent results@12# suggest that it is possible to hav
normal heat conduction in this type of system. To induce h
transport we have put two heat reservoirs at the left-
right-hand sides of the billiard chain~see Fig. 19!. The heat
reservoirs are modeled by stochastic kernels of Gaus
type,

P~v !56
uvu
T

e2v2/2T, ~37!

wherev is the x component of the velocity in the collisio
with the heat bath at temperatureT. The minus sign is taken
at the right-hand side and the plus sign at the left reserv
The Boltzmann’s constant is set to one. A comment is
order here; in our simulations, when the particle collid
with the heat reservoir, they component of the velocity is
conserved and thex component is changed in agreement w

FIG. 19. Schematic representation of a polygonal billiard ch
put in contact with two heat reservoirs of temperatureT0 andT1.
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the distribution~37!. One may wonder if it is also necessa
to distribute thevy velocity component according to a Max
wellian distribution. In fact this is not needed in our cas
Actually, what happens is that after many collisions, in sp
of the fact that onlyvx is randomized, thevy is finally dis-
tributed according to a distribution that numerically see
very close to a Maxwell distribution. To illustrate this poin
we have computed thevy velocity at each collision with a
heat reservoir~we remember that we keep this component
the velocity unchanged during the collision with the he
baths! and evaluated its distribution. In Fig. 20 we show t
results of a typical simulation for heat reservoirs with te
peraturesT051(a) andT151.05(c). It is clear that thevy
distribution is Maxwellian with the correct temperature, a
though this component of the velocity is not taken at rand
during the collisions with the heat reservoir, as is the case
vx .

Following Alonsoet al. @16# we computed the tempera
ture field at the stationary state. To achieve this task we
fined a grid of points in configuration space (xi ,yj ), (i
51, . . . ,Nx , j 51, . . . ,Ny) around which there is a cellCi j .
This set of cells defines a partition of the configuration spa
During the time evolution the particle crosses the cellCi j in
Ni j occasions; let us callta andEa( i j ) the time spent by the
particle and its energy during thea visit to the cell (a
51, . . . ,Ni j ). We define a coarse grained temperature fi
T( i j ) as the average

T~ i j !5^E& i j 5

(
a51

Ni j

taEa~ i j !

(
a51

Ni j

ta

. ~38!

n

FIG. 20. Normalized velocity distribution (vy component!. In
~a! the distribution at the left heat reservoir (T051.00). In ~b! the
distribution at the center of the billiard chain and in~c! the distri-
bution at the right reservoir (T151.05). The thick lines are the bes
Gaussian fitting of the histograms.
1-11
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This procedure defines a two-dimensional field. As we h
mentioned, the transport takes place along thex direction so
we will focus on thex2T(x,y) plane at some stages.

Another quantity of interest is the heat flux at the statio
ary state. The kinetic energy is constant within the billia
and only changes when there is a collision with a reserv
in which case it suffers a change in energy

DEk5Ein2Eout , ~39!

with k an index for the collision. If we sum overN of such
events that take place over a timetN we have for the hea
flux

FIG. 21. Typical behavior~for f25p/5) of the heat current a
the boundaries as a function of time. After many collisions
stationary state is reached and the current stabilizes at a con
value.
06613
e
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ir,

j n5
1

tN
(
k51

N

DEk . ~40!

The stationary state is reached if for long enough timetN the
heat flux is constant. In Fig. 21 we show a typical heat c
rent obtained during the simulations. It is clear how the h
current stabilizes at a constant value once the system rea
the stationary state. We have numerically computed the t
perature field, as defined in Eq.~38!, as well as the hea
current as a function of the system size. We have analy
how the heat flux scales with the system size. For a sin
particle simulation and for a system withn fundamental cells
~not to be confused with the cells defined for the evaluat
of the temperature! we have a fluxj 1(n). In order to imple-
ment the thermodynamic limit correctly we should study t
current j n(n)5n j1(n) ~for a density of one particle per fun
damental cell!. In our numerical simulations we found tha
j n(n) scales asgn2d. We have to distinguish the casesf2

5p/3 andf25p/4 from f25p/q (q55,6,7,8,9).
For f25p/3 is clear that the heat flux is such that it lea

to an infinite heat conductivity coefficient. In this cased
50.72. Forf25p/4 the heat current scales withd51.63,
which yields a zero heat conductivity coefficient. All th
other systems have scaling exponents very close to one~see
Fig. 22!.

The temperature fields~see Fig. 23! are linear for small
temperature differences and show some structure induce
the geometry of the boundaries. We can conclude then
for f25p/q (q55,6,7,8,9) the heat conduction is norma
but not for the casesf25p/3 andp/4, which are superdif-
fusive and subdiffusive, respectively.

As noticed in@16# the temperature fields scale with leng
as T[0,L] (x)5T[0,1](x/L). In Fig. 24 we show the typica
density plots of the two-dimensional temperature field. In
the systems we have a complete consistency with the re

ant
ehavior
e

FIG. 22. Scaling behavior of the heat flux for the systemsf25p/3,p/4 andp/6 ~a!, andf25p/q (q55,6,7,8,9)~b!. The figures show
how the systemsf25p/3 andp/4 have infinite and zero heat conductivity constant, respectively. The other cases show a scaling b
compatible with a well defined heat conductivity coefficient in the thermodynamic limit. In~b! the curves have been translated along thy
axis in order to compare them.
1-12



POLYGONAL BILLIARDS AND TRANSPORT: . . . PHYSICAL REVIEW E 66, 066131 ~2002!
FIG. 23. Temperature profiles in thex2T(x,y) plane for a system withf25p/6, five fundamental cells andT051,T151.05 ~a! and
T051,T151.2 ~b!. The straight lines are the ideal Fourier profiles.
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VI. CONCLUDING REMARKS

In conclusion, while one can agree that most of the
pects in relation to the links between chaotic dynamics
transport are more or less well known, much remains to
done for nonchaotic systems with some degree of stocha
ity, which has in this case a very different origin to the one
chaotic systems. In this regard, polygonal billiards are sim
prototype systems that constitute a natural step forward
the study of the connections between transport and dyna
cal properties. It is only recently that there is convinci
numerical evidence@9,11# suggesting that some classes
polygonal billiards may have well defined transport prop
ties. Our goal in this work has been to go deeply in the
matters, extending our previous research on the Lore
channel@16# to polygonal chains.

In our study of a family of polygonal chains we hav
analyzed the diffusion of ensemble of particles as well as
heat conduction. Our strategy has been twofold. On
hand, we computed the mean square displacement and
fied that for some members of the family it behaves dif

FIG. 24. Density plot of the temperature field forf25p/6, five
fundamental cells,T051, andT151.05.
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sively, while for others the mean square displacement
haves in a strange way~either subdiffusively or
superdiffusively!. On the other hand, the validity of the dif
fusion equation has been explored through the study of
dispersion relation for diffusion for long wavelengths@see
Eqs.~5! and ~10!#.

In both cases our main conclusion is that there are so
members of the family of systems studied that satisfy
Einstein relation for diffusion. For these systems we a
showed that the dispersion relation for hydrodynamic mo
is compatible with the diffusion equation.

Single particle simulations give us the same results.
important point is that any member of the family has a w
defined super Burnett coefficient.

The analysis of the velocity autocorrelation functions a
their spectral functions lead us to the same conclusions.
those systems that present a diffusive or subdiffusive beh
ior, the Green-Kubo formula holds and gives us the corr
diffusion coefficient~zero in the case of subdiffusion!. The
spectral function analysis is in agreement with these resu
The velocity autocorrelation functions oscillate and decay
such decay has to be analyzed more carefully, taking
account the oscillations.

The multifractal analysis of the spectral measure reve
that the Hausdorff dimension of the spectrum is probably o
for all systems. Our simulations do not allow us to give
precise value of the correlation dimensionD2. Nonetheless
there is numerical evidence that supports the statement
the integrated correlation function decays as;t2D2. Our
integrated autocorrelation functions decay as;t21. All this
data gives us indications that the polygonal billiards stud
may be mixing.

Finally, we have studied heat transport in the polygo
chain and found that, naturally, those systems which pre
diffusion also have normal heat transport. On the contra
for the systems with subdiffusion (f25p/4) the computa-
tions lead to a zero heat conductivity coefficient, and to
infinite heat conductivity coefficient for the superdiffusiv
system (f25p/3).

With respect to the nature of the nonequilibrium statio
1-13
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ALONSO, RUIZ, AND de VEGA PHYSICAL REVIEW E66, 066131 ~2002!
ary states for diffusion and heat conduction it would be
teresting to study if fractal or self-similar structures emer
as those observed for the Lorentz gas and other models@10#.

As a last point let us mention that our results come fr
finite time numerical simulations; it would be of great inte
est to have some mathematical results of these delicate
ters.
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APPENDIX: DEFINITION OF THE
TEMPERATURE FIELD

The point particle is located atr t5(x,y) at time t; the
number densityn(z,t) is defined as

n~z,t !5
1

t E0

t

dt d (2)~z2r t!, ~A1!

whered (2)(r ) is Dirac’s delta. If we adopt anapproximate
representation ofd (2)(r ) as

1

e2
xe~z2r t!, ~A2!

with xe(z2r t) the characteristic function of a cell centere
at z with surfacee2 such that is one ifr t is within the cell and
zero otherwise. Notice that fore→0 we recover Dirac’s
delta from Eq.~A2!. For this finite resolution thecoarse-
grainednumber density is
J
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ne~z,t !5
1

te2E0

t

dt xe~z2r t!. ~A3!

In the same manner we define the mean kinetic energy

E~z,t !5
1

t E0

t

dt E~r t!d
(2)~z2r t!, ~A4!

and its coarse-grained approximation

Ee~z,t !5
1

te2E0

t

dt E~r t!xe~z2r t!. ~A5!

The coarse-grained temperature field is defined from
assumption of local equilibrium and is

Te~z,t !5

E
0

t

dt E~r t!xe~z2r t!

E
0

t

dt xe~z2r t!

. ~A6!

If during the time interval (0,t) the trajectoryr t visits the
cell centered atz N times, and in each visit spends a timeta ,
then it follows from Eq.~A6! that

Te~z,t !5

(
a51

N

taE~z,ta!

(
a51

N

ta

. ~A7!

If the time t is long enough we can reach a stationary st
andTe(z,t) can be considered an approximation of the s
tionary temperature field of the system at scalee. If the
two-dimensional coordinatez is indexed byi j we recover the
expressions used throughout the paper.
ure
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